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Abstract

Strain energy density is developed for a network of flexible chains with weak excluded-volume interactions between segments. Constitutive

equations (involving three to four material constants) are derived for an incompressible network of self-repellent chains at finite strains. These

relations are applied to study the elastic response of thermoplastic elastomers at uniaxial tension. Good agreement is demonstrated between

experimental data and results of numerical simulation at uniaxial deformations with elongation ratios up to 1100%.

q 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

This study is concerned with modeling the mechanical

response of thermoplastic elastomers at finite strains. Thermo-

plastic elastomers (TPE) are polymer materials that combine

mechanical properties of vulcanized rubber (elastic recovery

after large deformations) with high-speed processability and

recyclability of thermoplastics [1]. Conventional TPEs are

block copolymers made by copolymerization of two or more

monomers by using block or graft polymerization techniques.

Application of the block methods results in the formation of

linear macromolecules consisting of alternating blocks of hard

(crystallizable) and soft (amorphous) segments. Unlike

vulcanized rubbers, where chains linked by chemical cross-

links resist flow, TPEs demonstrate the mechanical behavior

typical for polymer melts above the melting temperature for

hard segments Tm. Below Tm, micro-phase separation occurs

due to the thermodynamic incompatibility between blocks.

When hard segments are not long enough to crystallize by the

chain-folding process, bundling of hard segments occurs that

induces formation of fringed micelles in a continuous

amorphous phase [2]. These micelles serve as permanent

cross-links that transmit forces between soft segments

remaining in the rubbery state. As a result, in the interval of

temperatures between the glass transition temperature for soft

segments and the melting temperature for hard segments,
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the elastic response of TPEs resembles that of rubbers.

Mechanical properties of thermoplastic elastomers has attracted

substantial attention in the past 5 years. This may be explained

by (i) development of novel classes of TPEs, (ii) discovery of

new methods for their synthesis on the commercial scale, and

(iii) introduction of new areas of application.

Experimental stress–strain curves of thermoplastic elasto-

mers at uniaxial tension with large elongation ratios l (up to

lZ20) demonstrate two qualitatively different types of stress–

strain diagrams (Fig. 23 in [3]). The first is typical of rubber

gum, whose stress–strain curve may be divided into three

intervals: (i) in the first part, the engineering tensile stress s

strongly increases with l at some initial interval (1!l!2),

after which (ii) the stress–strain curve changes its slope, and the

stress weakly (sub-linearly) grows with elongation ratio in the

region associated with an apparent softening (2!l!6), and,

finally, (iii) s strongly (exponentially) increases with l in

the interval of deformations associated with strain-hardening

(lO6). The other type of stress–strain dependencies is typical

of bimodal networks [4] and semi-crystalline polymers [5]: the

engineering stress (i) strongly increases at the initial stage of

loading (1!l!2), and (ii) grows linearly with l after the slope

of the stress–strain diagram changes. An increase in the

network strength (driven, e.g. by the growth of the content of

hard segments of chains) causes transformation of an ‘elastic’

stress–strain diagram (demonstrating a monotonous increase in

the nominal stress with the nominal strain) into an ‘elasto-

plastic’ curve with a pronounced yield point [6].

One of the first models for the elastic behavior of TPEs was

proposed in [7] based on the slip-link theory [8]. Another

model for the mechanical behavior of TPEs was proposed in
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[9], where the finite extensibility of chains was accounted for

by using a Pade approximation for the inverse Langevin

function, whereas stress-induced rearrangement of internal

structure of thermoplastic elastomers was treated with the help

of a yield stress. Phenomenological stress–strain relations for

rubbers and thermoplastic elastomers were suggested in [10].

In a series of papers [11–13], stress–strain relations were

derived for the elasto-visco-plastic behavior of TPEs based on

a Zener phenomenological model (an elastic spring connected

in parallel with a Maxwell element).

A common feature of the above models is that they are

grounded (explicitly or implicitly) on the assumption about

finite extensibility of chains. Although this hypothesis seems

natural at first sight, its implementation in terms of the James–

Guth model [14] implies that polymer chains have also finite

bending rigidity (a rigorous derivation of the Hamiltonian for a

worm-like chain as a limit of a Hamiltonian for a discrete chain

with correlated segments can be found in [15]). This makes the

above approaches questionable, as no experimental evidence

exists that thermoplastic elastomers are formed by semi-

flexible chains.

It should be noted that finite extensibility is not the only

reason for the non-Gaussian statistics of chains in a network.

Among other reasons, one can mention the effect of excluded

volume [16], as well as mechanically-induced changes in the

distribution of lengths of chains in an ensemble.

Constitutive equations in finite elasticity of polymers based

on the assumption that the average length of chains evolves

under loading (in thermoplastic elastomers, this change may be

attributed to stress-induced detachment of chains in the rubbery

state from micelles formed by hard segments in the crystalline

or glassy states) were developed in [17,18].

The objective of this study is to derive constitutive

equations in finite elasticity of thermoplastic elastomers

based on the concept of permanent networks of self-avoiding

strands (the other physical hypothesis that leads to the non-

Gaussian statistics of individual chains). Our aim is to develop

stress–strain relations that (i) are based on a physically-

plausible scenario for deformation at the micro-level, (ii)

correctly describe available experimental data at uniaxial

tension, (iii) involve a relatively small number of adjustable

parameters that change consistently with physical character-

istics of thermoplastic elastomers, and (iv) allow the above-

described two types of the mechanical response of TPEs to be

distinguished in terms of a single model.

The starting points of our analysis are (i) an explicit

expression for the configurational free energy of a self-

avoiding chain recently derived in [19] and (ii) the assumption

that the strength of excluded-volume interactions between

segments is affected by mechanical factors. The exposition is

organized as follows. Configurational free energy of a self-

repellent chain is calculated in Section 2. Strain energy density

of a network of flexible chains with weak excluded-volume

interactions is developed in Section 3. Constitutive equations

are derived in Section 4. These relations are simplified for

uniaxial tension of an incompressible network in Section 5.

Adjustable parameters are found in Section 6 by fitting
experimental data. Some concluding remarks are formulated

in Section 7.
2. Flexible chains with excluded-volume interactions

A flexible chain is treated as a space curve with a contour

length L. Its arbitrary configuration is described by rZr(s),

where r stands for the radius vector, and s2[0,L]. The

statistical weight of any configuration r(s) is determined by a

Hamiltonian H(r). The Hamiltonian of a standard Gaussian

chain (no segment interactions) reads [16]

H0ðrÞZ
3kBT

2b

ðL
0

dr

ds
ðsÞ

� �2

ds; (1)

where kB is Boltzmann’s constant, T stands for the absolute

temperature, b is the Kuhn length (the characteristic length of a

segment), and the subscript index ‘0’ refers to the Gaussian

statistics. The Hamiltonian of a flexible chain with segment

interactions is given by

HðrÞZH0ðrÞCFðrÞ; (2)

where F is the energy of intra-chain interactions. To describe

excluded-volume interactions between segments, we accept the

Edwards model [20], according to which F is proportional to

the number of self-intersections

FðrÞZ
vkBTb

2

2L

ðL
0

ds

ðL
0

rðsKs0Þd rðsÞKrðs0Þ
� �

ds0: (3)

Here d(r) is the Dirac delta-function that counts intersections

between segments labeled by s and s 0, the dot stands for inner

product, v is a dimensionless coefficient that characterizes

strength of self-avoiding interactions, the quantities b and L are

introduced to preserve the correct dimensionality of the right-

hand of Eq. (3), and r(s) is a regularizing function that ensures

that the average (over all configurations) number of self-

intersections remains finite. This function ascribes to each

intersection between segments labeled by s and s 0 some weight

r that (i) equals zero when the difference sKs 0 vanishes, and

(ii) reaches its ultimate value of unity when the distance

between these segments measured along the curve r(s)

becomes relatively large. For definiteness, we set

rðsÞZ 1Kexp K
jsj

l

� �
; (4)

where l is the characteristic length of internal inhomogeneity.

Eq. (4) provides a smooth version of the Edwards regulariz-

ation [20]

rðsÞZ 0 ðs! lÞ; rðsÞZ 1 ðsO lÞ;

with a cut-off length l. For a chain with a Hamiltonian H(r), the

distribution function p(Q) of end-to-end vectors Q coincides
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with the normalized Green function

pðQÞZ

ðrðLÞZQ

rð0ÞZ0

exp K
H rðsÞð Þ

kBT

� �
D½rðsÞ�; (5)

where the path integral with the measure D½r� is calculated

over all curves r(s) [15] that satisfy the boundary conditions

r(0)Z0 and r(L)ZQ. The normalization condition for the

Green function readsð
pðQÞdQZ 1; (6)

where integration is performed over all vectors Q.

Standard calculations of the distribution function for a

Gaussian chain with Hamiltonian (1) result in

p0ðQÞZ
3

2pB2

� �3=2

exp K
3Q2

2B2

� �
; (7)

where B2ZbL is the mean-square end-to-end distance.

Omitting complicated transformations of the path integral

in Eq. (5) [19], we present the final result in the following

limit: (i) the strength of self-repellent interactions v tends to

infinity, (ii) the ratio B/l that describes the internal

inhomogeneity of segment interactions approaches zero,

and (iii) their product remains finite

vB

l
/

2p

3

� �3=2

c; (8)

where c is an effective strength of excluded-volume

interactions. Under condition (8), the distribution function

for a chain with Hamiltonian (2)–(4) reads

pðQÞZ p0ðQÞ 1K
c

4

ð1
0

exp K
3Q2x

2B2ð1KxÞ

� �
E3=2
1=2;3=2

2
4

Kc
ffiffiffi
x

p
ð1KxÞ

� � dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1KxÞ

p

3
5

!
1ffiffiffiffi
p

p

ð1
0

E1=2;1=2 Kc
ffiffiffi
x

p
ð1KxÞ

� � dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1KxÞ

p

2
4

3
5
K1

: ð9Þ

Here Ea,b(x) and E
g
a;bðxÞ are the Mittag–Leffler functions

[21]. These functions with half-integer indices in Eq. (9) are

expressed by means of integrals of elementary functions

E3=2
1=2;3=2ðKxÞZ

4

p

ð1
0

1ffiffiffiffi
p

p Kxz expðx2z2ÞerfcðxzÞ

� � ffiffi
z

p
dzffiffiffiffiffiffiffiffiffiffi

1Kz
p ;

E1=2;1=2ðKxÞZ
1ffiffiffiffi
p

p Kx expðx2ÞerfcðxÞ; (10)
where

erfcðxÞZ
2ffiffiffiffi
p

p

ðN
x

expðKt2Þdt

is the complementary error function.

For a flexible chain with weak self-avoiding interactions

(c/1), we disregard terms beyond the first order of smallness

in Eq. (10) and find that

pðQÞZ p0ðQÞ 1Cc
2

3
K

1ffiffiffiffi
p

p

ðN
0

exp K
3Q2z2

2B2

� �
dz

1Cz2

2
4

3
5

8<
:

9=
;:

(11)

The configurational free energy of a chain j(Q) is calculated

by means of the Boltzmann equation

jðQÞZKkBT ln pðQÞ: (12)

Our aim now is to apply Eqs. (11) and (12) to find the strain

energy of a weakly self-avoiding chain.
3. Strain energy density of a network of flexible chains

A thermoplastic elastomer is modeled as an incompressible

network of flexible chains bridged by permanent junctions

(micro-crystallite cross-linking points and entanglements

between chains in the rubbery state) [9]. The network is

treated as an ensemble of strands (segments of chains between

consequent junctions). The position of any strand is entirely

determined by its end-to-end vector (that is the positions of

appropriate junctions). In the nonlinear elasticity theory, two

states of a medium are conventionally distinguished [22]: (i)

the reference (initial) state occupied before application of

external loads, and (ii) the actual (deformed) state acquired

after deformation. Denote by Q and q end-to-end vectors of a

strand in the reference and actual states, respectively. Adopting

the affinity hypothesis (which means that the deformation

gradient for motion of junctions at the micro-level coincides

with the deformation gradient F for macro-deformation), we

write

qZF,Q: (13)

Let P(Q) be a distribution of end-to-end vectors Q of strands in

the reference state of a network. An important difference

between the present approach and the conventional theory of

rubber elasticity is that we do not identify the distribution of

end-to-end vectors in the network P (for a TPE, this distribution

is of kinetic origin, because it depends on the rate of cooling of

the melt) with the distribution of end-to-end vectors for a single

chain p (which is characterized by the chain statistics).

It follows from Eqs. (12) and (13) that the increment (with

respect to the actual state) of configurational free energy of a

strand driven by deformation of the network reads

D1jðF;qÞZjðQÞKjðqÞZ kBT ln pðqÞKln pðFK1,qÞ
� 	

:

(14)
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Averaging Eq. (14) with the help of the distribution function

P(q) (the argument is the end-to-end vector in the actual state),

we arrive at the formula for the strain energy

w1ðFÞZ kBT

ð
ln pðqÞKln pðFK1,qÞ
� 	

PðqÞdq: (15)

By analogy with Eq. (14), we calculate the increment (with

respect to the reference state) of configurational free energy

D2jðF;QÞZjðqÞKjðQÞZ kBT ln pðQÞKln pðF,QÞ
� 	

:

Averaging this equality over the distribution of end-to-end

vectors of strands in the network P(Q) (the argument is the end-

to-end vector in the reference state), we obtain

w2ðFÞZ kBT

ð
ln pðQÞKln pðF,QÞ
� 	

PðQÞdQ: (16)

The strain energy per chain w is defined as the weighted sum of

the strain energies w1 and w2 calculated by using two ways of

averaging of the increment of configurational free energy

wZ ð1KaÞw1 Caw2; (17)

where a2[0,1] is a material parameter. Insertion of Eqs. (15)

and (16) into Eq. (17) implies that

wZ kBT

ð
aðln pðQÞKln pðF,QÞÞ
�

Cð1KaÞðln pðQÞKln pðFK1,QÞÞ
	
PðQÞdQ:

(18)

Assuming the functions p(Q) and P(Q) to be isotropic

(spherically symmetric)

pðQÞZ p�ðQ
2Þ; PðQÞZP�ðQ

2Þ; (19)

where p*(r) and P*(r) are given functions of a scalar argument

r, and Q2ZQ$Q, we arrive at the formula

wZ kBT

ð
a ln

p�ðQ
2Þ

p�ðQ,C,QÞ

�

Cð1KaÞln
p�ðQ

2Þ

p�ðQ,CK1,QÞ

�
P�ðQ

2ÞdQ;

(20)

where the left and right Cauchy–Green deformation tensors are

introduced by the conventional relations [22]

BZF,FT; CZFT,F; (21)

where T stands for transpose.

Adopting the conventional assumption that the energy of

inter-chain interactions is accounted for by means of the

incompressibility condition [23], we calculate the strain energy

density W per unit volume of a network as the sum of strain

energies of individual strands

W ZMw

where M is the average number of strands per unit volume.

Substituting Eq. (20) into this equality, we find the strain

energy density of an incompressible isotropic polymer net-

work:
W Z kBTM

ð
a ln

p�ðQ
2Þ

p�ðQ,C,QÞ

�

Cð1KaÞln
p�ðQ

2Þ

p�ðQ,CK1,QÞ

�
P�ðQ

2ÞdQ:

(22)

3.1. Strain energy of a Gaussian strand in a network

Calculating the integral in Eq. (20) for an isotropic

network of Gaussian chains with the distribution function of

end-to-end vectors (7), we arrive at the Mooney–Rivlin

formula

wZm1ðJ1K3ÞCm2ðJ2K3Þ; (23)

where

m1 Z
2pakBT

B2

ðN
0

P�ðQ
2ÞQ4dQ;

m2 Z
2pð1KaÞkBT

B2

ðN
0

P
*
ðQ2ÞQ4dQ;

and Jm (mZ1,2,3) are principal invariants of the right

Cauchy–Green tensor C. In particular, at aZ1 (averaging of

the increment of configurational free energy is performed

over the distribution function of end-to-end vectors in the

reference state), Eq. (23) implies the formula for the strain

energy of a neo-Hookean elastic medium

wZm1ðJ1K3Þ; (24)

where

m1 Z
2pkBT

B2

ðN
0

P�ðQ
2ÞQ4dQ: (25)

The following conclusions may be drawn: (i) the Mooney–

Rivlin equation (23) is rigorously deduced within the

classical theory of rubber elasticity, which implies that it

is not a purely phenomenological relation, where the

constant m2 characterizes ‘deviations from the statistical

theory’ [24]; (ii) for an isotropic incompressible network of

Gaussian strands, Eqs. (23) and (24) are valid for an

arbitrary distribution function P*(r); and (iii) to develop the

conventional relation for the elastic modulus

m1 Z
1

2
kBT ;

it suffices to presume the distribution of end-to-end vectors

of strands in a network to be Gaussian

PðQÞZ
3

2pB2

� �3=2

exp K
3Q2

2B2

� �
; (26)

substitute Eq. (26) into Eq. (25) and perform integration

explicitly.
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3.2. Strain energy of a weakly self-avoiding strand in a

Gaussian network

Our aim now is to derive the strain energy of a weakly self-

avoiding strand with the distribution function of end-to-end

vectors (11) in an incompressible polymer network, where the

distribution of end-to-end vectors of strands is given by Eq.

(26). It is worth mentioning an important difference between a

network of Gaussian strands (where segment interactions are

disregarded) and a network of self-avoiding chains (where

excluded-volume interactions are taken into account). The

difficulty arising in the latter case is that the constitutive model

should reflect not only interactions between segments

belonging to the same strand (whose free energy is determined

by Eqs. (11) and (12)), but also interactions between segments

belonging to different strands located nearby. As the energy of

excluded-volume interactions between segments belonging to

different chains is unknown, we presume, in order to simplify

the model, that the total configurational free energy of a strand

in a network can be described by Eqs. (11) and (12) with c

treated as an average (over the network of strands) strength of

excluded-volume interactions.

Based on this approximation, we find from Eqs. (11) to (20)

that

wZ �w1 C �w2; (27)

where

�w1 Z kBT

ð
a ln

p0ðQÞ

p0ðQ,C,QÞ

�

Cð1KaÞln
p0ðQÞ

p0ðQ,CK1,QÞ

�
P�ðQ

2ÞdQ;

�w2ZkBT

ð
a ln 1Cc

2

3
K

1ffiffiffiffi
p

p

ðN
0

exp K
3Q2z2

2B2

� �
dz

1Cz2

0
@

1
A

0
@

1
A

2
4

8<
:

Kln 1Cc
2

3
K

1ffiffiffiffi
p

p

ðN
0

exp K
3ðQ,C,QÞz2

2B2

� �
dz

1Cz2

0
@

1
A

0
@

1
A
3
5

Cð1KaÞ ln 1Cc
2

3
K

1ffiffiffiffi
p

p

ðN
0

exp K
3Q2z2

2B2

� �
dz

1Cz2

0
@

1
A

0
@

1
A

2
4

Kln 1Cc
2

3
K

1ffiffiffiffi
p

p

ðN
0

exp K
3ðQ,CK1,QÞz2

2B2

� �0
@

0
@

dz

1Cz2

1
A
1
A
3
5
9=
;P�ðQ

2ÞdQ: ð28Þ

The first expression in Eq. (28) is determined by Eq. (23)

�w1 Zm1ðJ1K3ÞCm2ðJ2K3Þ: (29)

Neglecting terms beyond the first order of smallness in the

second equality in Eq. (28), using Eq. (26) and calculating the
Gaussian integrals, we find that

�w2 Z
ckBTffiffiffiffi

p
p

ðN
0

a
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðl1z
2 C1Þðl2z

2 C1Þðl3z
2 C1Þ

p
 "

K
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðz2 C1Þ3
p

!

Cð1KaÞ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lK1
1 z2 C1

� �
lK1
2 z2 C1

� �
lK1
3 z2 C1

� �q
0
B@

K
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðz2 C1Þ3
p

!#
dz

1Cz2
: ð30Þ

Simple algebra implies that

ðl1z
2 C1Þðl2z

2 C1Þðl3z
2 C1ÞZ z6 CJ2z

4 CJ1z
2 C1;

lK1
1 z2 C1

� �
lK1
2 z2 C1

� �
lK1
3 z2 C1

� �
Z z6 CJ1z

4 CJ2z
2 C1;

where we utilized the incompressibility condition. Substitution

of these expressions into Eq. (30) and use of Eqs. (27) and (29)

results in

wZC0
1 aðJ1K3ÞC ð1KaÞðJ2K3Þ
� 	

CC0
2c

ðN
0

a
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z6 CJ2z
4 CJ1z

2 C1
p K

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz2 C1Þ3

p
 !"

C ð1KaÞ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z6 CJ1z
4 CJ2z

2 C1
p K

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz2 C1Þ3

p
 !#

dz

1Cz2
; ð31Þ

where

C0
1 Z

kBT

2
; C0

2 Z
kBTffiffiffiffi
p

p :

Eq. (31) describes the strain energy of a weakly self-avoiding

strand in a network. Multiplying Eq. (31) by the number of

strands per unit volumeM, we find the strain energy density per

unit volume of an incompressible Gaussian network of self-

avoiding chains,

W ZC1 aðJ1K3ÞC ð1KaÞðJ2K3Þ
� 	

CC2c

ðN
0

a
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z6 CJ2z
4 CJ1z

2 C1
p K

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz2 C1Þ3

p
 !"

C ð1KaÞ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z6 CJ1z
4 CJ2z

2 C1
p K

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz2 C1Þ3

p
 !#

dz

1Cz2
; ð32Þ

where

C1 ZC0
1M; C2 ZC0

2M:
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The term in the first square brackets describes the strain energy

of a Mooney–Rivlin medium. Bearing in mind that J1R3 and

J2R3 for an arbitrary deformation of an incompressible

medium, we infer that the other term in Eq. (32) is non-

positive. This means that Eq. (32) determines a sub-linear (with

respect to the principal invariants of the right Cauchy–Green

tensor) strain energy density of a network, compared to the

linear strain energy density provided by the Mooney–Rivlin

formula (23). It is convenient to present Eq. (32) in the form

W ZC1U0 CC2cUint; (33)

where the function

U0 Z aðJ1K3ÞC ð1KaÞðJ2K3Þ (34)

is proportional to the strain energy of a Gaussian chain,

whereas the function

UintZ

ðN
0

a
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z6CJ2z
4CJ1z

2C1
p K

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz2C1Þ3

p
 !"

Cð1KaÞ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z6CJ1z
4CJ2z

2C1
p K

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz2C1Þ3

p
 !#

dz

1Cz2

(35)

is proportional to the increment of strain energy caused by

excluded-volume interactions between segments.
4. Constitutive equations for a Gaussian network of self-

avoiding chains

Eq. (32) demonstrates that the strain energy density W

depends on the first two principal invariants, J1 and J2, of the

right Cauchy–Green tensor C (the third principal invariant of

this tensor equals unity for volume-preserving deformations).

According to the Finger formula [22], the Cauchy stress tensor

S is expressed in terms of W as

SZK9IC2ðW1BKW2B
K1Þ; (36)

where 9 stands for pressure, I is the unit tensor, and

Wm Z
vW

vJm
ðmZ 1;2Þ:

Given a strain energy density W, Eq. (36) provides the stress–

strain relation for an incompressible network of flexible

strands. Adopting expression (32) for the strain energy density

and differentiating this formula with respect to J1 and J2, we

obtain

W1 Zm aK
k

2

ðN
0

a

ðz6 CJ2z
4 CJ1z

2 C1Þ3=2

�8<
:

C
ð1KaÞz2

ðz6 CJ1z
4 CJ2z

2 C1Þ3=2

�
z2dz

1Cz2

9=
;;
W2 Zm ð1KaÞK
k

2

ðN
0

az2

ðz6 CJ2z
4 CJ1z

2 C1Þ3=2

�8<
:

C
1Ka

ðz6 CJ1z
4 CJ2z

2 C1Þ3=2

�
z2dz

1Cz2

)
;

(37)

where mZC1 stands for an analog of the elastic modulus, and

kZ
C2c

C1

Z
2cffiffiffiffi
p

p

is proportional to the strength of excluded-volume interactions.

Until this point, all derivations were carried out within the

classical statistical mechanics of flexible chains, and the only

simplifications were (i) linearization (11) of the strain energy of

a self-repellent chain under the assumption regarding the

weakness of excluded-volume interactions, and (ii) account of

excluded-volume interactions between segments belonging to

neighboring strands with the help of an adjustable parameter c

in Eq. (11) for the strain energy of a single chain. As a result,

we arrived at stress–strain relations (36) and (37) that involve

three quantities reflecting the network properties at the micro-

level: the elastic modulus m (which is determined by

temperature and concentration of strands in a network), the

dimensionless ratio a (that describes the influence of statistics

in the reference and deformed states on the configurational free

energy), and the dimensionless coefficient k (which is

proportional to the average strength of segment interactions).

The parameters m and a are constant (independent of the

applied deformation), whereas k may be treated as a quantity

affected by stresses (strains) that change the strength of

segment interactions.

It seems natural to suppose that the average strength k is

reduced under active loading due to mechanically-induced

orientation of strands and changes in the micro-structure of an

elastomer. To describe evolution of k with time t, the following

first-order kinetic equation is suggested

dk

dt
ZGk; (38)

where G describes the rate of mechanically-induced decrease in

the strength of excluded-volume interactions. As the present

study focuses on the elastic response of TPEs, which means

that time-dependent effects are disregarded, we suppose that G

is proportional to the strain-rate intensity Di. For a three-

dimensional deformation of an incompressible network, the

strain-rate intensity reads

Di Z

ffiffiffiffiffiffiffiffiffiffiffiffi
2

3
D:D

r
; (39)

where D is the rate-of-strain tensor and the colon stands for

convolution. To characterize the effect of mechanical factors

on the rate of changes in the strength of interactions, we assume

G to be proportional to the energy of segment interactions Uint.

Combining these hypotheses and using Eqs. (35) and (38), we
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arrive at the formula

dk

dt
ZgDik

ðN
0

a
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z6 CJ2z
4 CJ1z

2 C1
p K

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz2 C1Þ3
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Cð1KaÞ
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z6 CJ1z
4 CJ2z

2 C1
p K

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz2 C1Þ3

p
 !#

dz

1Cz2
; kð0ÞZ k�; ð40Þ

where g is a material constant. Eqs. (36), (37) and (40) provide

a set of stress–strain relations for the elastic response of a

thermoplastic elastomer modeled as an incompressible net-

work of weakly self-avoiding chains. These equations involve

four adjustable parameters, m, a, g, and k* to be found by fitting

observations.
5. Uniaxial tension of an incompressible network

Our aim now is to simplify Eqs. (36), (37) and (40) for

uniaxial tension of a permanent network. Uniaxial deformation

of an incompressible bar is described by the formulas

x1 Z lX1; x2 Z lKð1=2ÞX2; x3 Z lKð1=2ÞX3;

where {Xm} and {xm} are Cartesian coordinates in the reference

and actual states, respectively, and l denotes elongation ratio.

The left and right Cauchy–Green tensors,B andC, and the rate-

of-strain tensor D are given by

BZCZ l2e1e1 ClK1ðe2e2 Ce3e3Þ;

DZ
_l

l
e1e1K

1

2
ðe2e2 Ce3e3Þ

� �
;

(41)

where em are base vectors of the Cartesian frame in the

reference state, and the superscript dot stands for the derivative

with respect to time. Insertion of expressions (41) into Eq. (36)

yields

SZS1e1e1 CS0ðe2e2 Ce3e3Þ;

where

S1 ZK9C2ðW1l
2KW2l

K2Þ;

S0 ZK9C2ðW1l
K1KW2lÞ:

(42)

Excluding 9 from Eq. (42) and the boundary condition on the

lateral surface of a specimen S0Z0 and introducing the

engineering tensile stress sZS1/l, we find that

sZ 2ðW1 CW2l
K1ÞðlKlK2Þ: (43)

It follows from Eqs. (39) and (41) that

J1 Z l2 C2lK1; J2 Z 2lClK2; Di Z j _ljlK1: (44)
Substitution of these relations and Eq. (37) into Eq. (43) yields

sðlÞZ2m lK
1

l2

� �
aC

1Ka

l

� �


K
k

2l

ðN
0

aðz2ClÞ

ðz6Cð2lClK2Þz4Cðl2C2lK1Þz2C1Þ3=2

�

C
ð1KaÞðlz2C1Þ

z6Cðl2C2lK1Þz4Cð2lClK2Þz2C1
� �3=2

#
z2dz

1Cz2

)
:

(45)

Insertion of expressions (44) into Eq. (40) implies that at active

loading with _lO0

dk

dl
Zg

k

l

ðN
0

a
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Eqs. (45) and (46) with the initial condition k(1)Zk* provide a

set of stress–strain relations for uniaxial tension of an

incompressible network of weakly self-avoiding chains.

6. Comparison with observations

Eqs. (45) and (46) involve four material constants: (i) the

elastic modulus m, (ii) the average strength of excluded-volume

interactions in the initial state k*, (iii) the rate of mechanically-

induced changes in the strength of segment interactions g, and

(iv) the dimensionless ratio a that reflects correlations between

the statistics of chains in the initial and current states.

To reduce the number of material constants and to

distinguish between the rubber-like and yield-like responses

of thermoplastic elastomers, we postulate that aZ1 for

polymers demonstrating the rubber-like behavior (in accord

with Eq. (17), this means that their strain energy is entirely

determined by the statistics of strands in the initial state),

whereas a is small compared with unity for polymers revealing

the yield-like response (which means that their strain energy

density is mainly determined by the statistics of strands in the

current state). Our aim now is to find adjustable parameters in

Eqs. (45) and (46) by fitting experimental data.

6.1. Rubber-like behavior

We begin with the analysis of polymers demonstrating the

rubber-like elastic response, set aZ1 in the governing

equations, and determine the constants k*, g and m by

approximating observations.



Fig. 2. The engineering tensile stress s versus elongation ratio l at uniaxial

tension of PIB–PS. Circles: experimental data on PIB–PS prepared with 26.8,

30.7, and 33.8 wt% of PS, from bottom to top, respectively [26]. Solid lines:

results of numerical simulation.

Fig. 1. The engineering tensile stress s versus elongation ratio l at uniaxial

tension of TPUU. Circles: experimental data on TPUU prepared with 17.7,

18.8, and 26.9 g of HDMI, from bottom to top, respectively [25]. Solid lines:

results of numerical simulation.
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First, we fit the experimental data on hyper-branched

segmented thermoplastic poly(urethane urea) elastomers

(TPUU). For a detailed description of the synthesis and the

experimental procedure, we refer to [25]. The dependencies of

the engineering tensile stress s on elongation ratio l at uniaxial

tension of TPUU with various contents of bis(4-isocyanoto-

hexyl)methane (HDMI) are plotted in Fig. 1.

The following procedure is used to match the observations.

We introduce some intervals ½0;kmax
� � and [0,gmax], where the

quantities k* and g are assumed to be located, and divide these

intervals by JZ10 points k
ðiÞ
� Z iDk and g(j)ZjDg with i,jZ

1,.,JK1, DkZkmax
� =J and DgZgmax/J. For each pair

fk
ðiÞ
� ;g

ðjÞg, Eqs. (45) and (46) are solved numerically (by

the Runge-Kutta method with the step DlZ10K3), and the

modulus m is found by the least-squares technique from the

condition of minimum of the functional

FZ
X
lm

½sexpðlmÞKsnumðlmÞ�
2; (47)

where sexp is the engineering tensile stress measured in the test,

snum is given by Eq. (45), and the sum is performed over all

elongation ratios lm at which the measurements are reported.

The best-fit parameters k
ði0Þ
� and gðj0Þ are determined by

minimizing the functional (47) on the set fkðiÞ� ;gðjÞg. Afterwards,

the same procedure is repeated several times for the new

intervals ½k
ði0Þ
� KDk;kði0Þ� CDk� and ½gðj0ÞKDg;gðj0ÞCDg� to

ensure an acceptable accuracy of matching the data.
Table 1

Adjustable parameters for TPUU with various contents of HMDI

HMDI (g) m (MPa) k* g

17.0 0.63 0.069 1.3

18.8 1.55 0.090 2.5

26.9 3.54 0.103 3.1
Approximation of observations is carried out for each stress–

strain curve separately.

The results of numerical simulation are depicted in Fig. 1,

and the best-fit parameters m, k* and g are listed in Table 1.

Fig. 1 demonstrates excellent agreement between the exper-

imental data and the results of numerical analysis at elongation

ratios up to lZ8. According to Table 1, all material constants

increase with content of HDMI, that is with concentration of

hard segments, which appears to be physically plausible. It

should be noted that m in Eq. (45) serves as an average elastic

modulus of an elastomer, and it does not necessary coincide

with the Young’s modulus measured at small strains.

We proceed with matching observations in uniaxial tensile

tests on polystyrene–polyisobutylene–polystyrene (PIB–PS)

triblock copolymers with various contents of polystyrene (PS).

A detailed description of TPEs and the experimental procedure

is reported in [26]. The experimental stress–strain curves are

depicted in Fig. 2 together with their approximations by the

model. Adjustable parameters in Eqs. (45) and (46) found by

using the above-described algorithm are given in Table 2.

Fig. 2 demonstrates good agreement between the observations

and the results of numerical simulation. According to Table 2,

the material parameters m, k* and g change consistently with

the content of polystyrene (the only exception is the value of g

at the maximal content of PS).
Table 2

Adjustable parameters for PIB–PS block copolymers with various contents of

PS

PS (wt%) m (MPa) k* g

26.8 0.15 0.069 1.14

30.7 0.34 0.108 2.12

33.8 0.50 0.116 1.92



Fig. 3. The engineering stress s versus elongation ratio l at uniaxial tension of

PEBAX films. Circles: experimental data on PEBAX with 11.9, 13.0 and

27.2 mol% of PA, from bottom to top, respectively [6]. Solid lines: results of

numerical simulation.
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We now approximate experimental data at uniaxial tension

of commercial thermoplastic elastomers PEBAX [poly(ether-

block-amide)] with various concentrations of polyamide (PA).

For a description of the material properties and the

experimental procedure, see [6]. The observations in tensile

tests are depicted in Fig. 3 together with their fits by the model.

Material constants are determined by the algorithm described

above and are presented in Table 3. Fig. 3 reveals excellent

agreement between the experimental data at elongations up to

lZ11 and the results of numerical analysis. Table 3 shows that

the adjustable parameters in Eqs. (45) and (46) are affected by

the concentration of PA in a consistent way.

The following conclusions may be drawn from the results

presented in Tables 1–3:

1. The elastic modulus of thermoplastic elastomers m grows

with content of rigid phase, but this increase does not obey

the standard rule of mixture.

2. The initial strength of excluded-volume interactions k*
grows with concentration of rigid phase. The increase in k*
is pronounced for TPEs where hard segments form micro-

domains in the glassy state (Tables 1 and 2), whereas it is

rather weak or it even disappears entirely for TPEs with

crystallizable segments (Table 3).

3. The rate of decrease in strength of excluded-volume

interactions g strongly grows with content of rigid phase
Table 3

Adjustable parameters for PEBAX with various contents of PA

PA (mol%) m (MPa) k* g

11.9 0.75 0.027 0.66

13.0 1.23 0.029 0.60

27.2 2.52 0.031 0.58
for TPEs with glassy micro-domains and weakly decays for

TPEs with crystalizable hard segments.

The increase in the elastic modulus m with concentration of

rigid phase appears to be natural due to the difference in moduli

of hard and soft micro-domains. The strong growth of k* and g

with content of rigid phase for TPEs with hard segments

forming glassy micro-domains (TPUU and PIB–PS) may be

attributed to mechanically-induced changes in the molecular

architecture in the rubbery phase with no rearrangement of

rigid micro-domains. On the contrary, the weak decrease in g

with content of rigid phase (PEBAX) may be explained by

screening of such a dependence driven by transformations of

micro-crystallites. Although this statement requires additional

investigations, some validation of this hypothesis is provided

by comparison of the characteristic size of rigid micro-domains

in the glassy state (1–2 nm [27]) with that in the crystalline

state (16–19 nm [6]).
6.2. Yield-like behavior

Our aim now is to approximate stress–strain diagrams at

uniaxial tension of TPEs revealing the yield-like response.

Unlike thermoplastic elastomers demonstrating the rubber-like

behavior, we fit observations with the help of four adjustable

parameters: m, k*, g and a. The algorithm of matching

experimental data is similar to that employed in the previous

section. The only difference is that we divide the intervals

where k*, g and a are assumed to be located by points kðiÞ� , g
(j)

and a(k). For each triple fk
ðiÞ
� ;gðjÞ;aðkÞg, we solve Eqs. (45) and

(46) numerically, find the elastic modulus m by using the least-

squares technique from the condition of minimum of the

functional (47), and choose the best-fit values of the material

constants by minimizing F in Eq. (47).
Fig. 4. The engineering stress s versus elongation ratio l at uniaxial tension of

elastomeric polypropylene (ePP) and its heptane-soluble fraction (HS–ePP).

Circles: experimental data [28]. Solid lines: results of numerical simulation.



Table 4

Adjustable parameters for elastomeric polypropylene with various amounts of

isotactic pentads IP and mass average molecular weights Mw

Polymer IP (%) Mw (kg/mol) m (MPa) k* g a

ePP 34 200.1 1.16 0.012 1.4 0.24

HS–ePP 44 220.8 1.96 0.038 2.0 0.37

Table 5

Adjustable parameters for elastomeric polypropylene with various contents of

isotactic pentads (IP), mass-average molecular weights Mw and polydispersity

indices (PDI)

IP (%) Mw (kg/mol) PDI m (MPa) k* g a

32.9 214.0 2.70 1.24 0.008 2.2 0.09

33.8 395.0 2.60 1.39 0.014 2.2 0.16

37.0 386.0 2.84 1.71 0.013 2.8 0.11

42.7 293.0 4.29 2.57 0.016 3.0 0.08
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We begin with matching stress–strain dependencies at

uniaxial tension of elastomeric polypropylene (ePP) [poly-

propylene (PP) whose chains are composed of isotactic

(crystalizable) and atactic (amorphous) segments] reported in

[28]. For a detailed description of synthesis and the

experimental procedure, the reader is referred to [28]. The

experimental stress–strain diagrams of ePP and its heptane-

soluble fraction (HS–ePP) are depicted in Fig. 4 together with

their approximations by the model. The best-fit parameters in

the constitutive equations are listed in Table 4. Fig. 4

demonstrates excellent quality of fitting observations at

elongation ratios up to lZ11. According to Table 4, where

the content of isotactic pentads (IP) is provided, the quantities

m, k*, g and a noticeably increase with the degree of

crystallinity and mass-average molecular weight Mw.

We proceed with the approximation of experimental data at

uniaxial tension of elastomeric polypropylenes with various

mass-average molecular weightsMw and polydispersity indices

(PDI). For a description of synthesis of ePP and the

experimental procedure, see [29]. The experimental stress–

strain diagrams are depicted in Fig. 5 together with their fits by

the model. This figure shows good agreement between the

observations and the results of numerical simulation. The best-

fit values of the adjustable parameters in the constitutive

equations are listed in Table 5. According to this table, the

elastic modulus m and the rate of mechanically-induced
Fig. 5. The engineering stress s versus elongation ratio l at uniaxial tension of

elastomeric polypropylene (ePP). Circles: experimental data on specimens with

the weight-average molecular weight 214.0, 395.0, 386.0, and 293.0, from

bottom to top, respectively [29]. Solid lines: results of numerical simulation.
changes in strength of segment interactions g are strongly

affected by the degree of crystallinity, and they noticeably

grow with content of isotactic pentads IP. The initial strength

of excluded-volume interactions k* increases with degree of

crystallinity as well, but it is also influenced by molecular

weight Mw. On the contrary, the parameter a (reflecting the

statistics of strands in the reference and current states) is

mainly affected by molecular weight and polydispersity index.

It should be noted, however, that although within each set of

observations plotted in Figs. 4 and 5, the parameters m and g

are mainly affected by the concentration of isotactic pentads,

the effect of IP is different for ePPs prepared by different

research groups. The latter means that the conditions of

synthesis noticeably affect the material constants in the

constitutive equations.

The following conclusions are drawn:

1. Unlike TPEs revealing the rubber-like mechanical

response, for which the parameter a equals unity, this

quantity ranges from 0.1 to 0.4 for thermoplastic elastomers

demonstrating the yield-like behavior.

2. The elastic modulus of TPEs m is mainly affected by the

degree of crystallinity, while the influence of molecular

weight and polydispersity index on this parameter is weak.

3. The initial strength of excluded-volume interactions k* and

the rate of mechanically-induced decrease in strength of

segment interactions g accept similar values for TPEs

showing the rubber-like and yield-like behavior.
7. Concluding remarks

Constitutive Eqs. (36), (37) and (40) have been derived for

the elastic response of thermoplastic elastomers at finite strains.

Unlike conventional theories of rubber elasticity that disregard

segment interactions, the stress–strain relations take into

account excluded-volume interactions between segments of

flexible chains. The model is based on the following

hypotheses: (i) an elastomer is thought of as an incompressible

network of chains bridged by permanent junctions; (ii) micro-

deformation of strands coincides with macro-deformation of

the network; (iii) an arbitrary strand is treated as a self-avoiding

chain with an effective strength that accounts for excluded-

volume interactions between segments belonging to the same

strand, as well as between segments belonging to different

strands, (iv) the strength of excluded-volume interactions is

strongly affected by mechanical deformations, its evolution
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under loading is described by the first-order kinetic equation

(40), (v) the strain energy density of an incompressible network

equals the sum of strain energies of individual strands, (vi) the

distribution function of distances between junctions in the

reference (undeformed) state of the network is Gaussian. The

assumptions (i), (ii) (v) and (vi) are typical of conventional

models in rubber elasticity, whereas hypotheses (iii) and (iv)

are novel.

The stress–strain relations have been simplified for uniaxial

tension of an incompressible network, see Eqs. (45) and (46),

and have been applied to approximate experimental data. It is

demonstrated that (i) the constitutive model correctly describes

experimental data at uniaxial tension of thermoplastic

elastomers with elongation ratios up to 1100%, (ii) it

distinguishes between the rubber-like and yield-like responses

of TPEs, and (iii) its material parameters are affected by the

micro-structure of thermoplastic elastomers in a physically

plausible way. An advantage of Eqs. (45) and (46) is that (i)

they are ‘physically motivated’ in the sense that these relations

are developed based on a simple physical picture on the micro-

level, (ii) they contain only three to four adjustable parameters

that have transparent physical meaning and can be found by

fitting observations in standard mechanical tests.
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